Blog de robótica e inteligencia artificial

Mostrando entradas con la etiqueta Formula1. Mostrar todas las entradas
Mostrando entradas con la etiqueta Formula1. Mostrar todas las entradas

1/14/2016

Qué ven los grandes diseñadores de Formula1

Está a punto de comenzar la pretemporada de 2016 de Formula1. Es en los días de presentación y tests donde más análisis técnicos se afanan por hacer los periodistas y medios especializados. Sin embargo, aquí os traigo un representativo vídeo donde se ve la aparente facilidad con la que un veterano diseñador de coches de competición describe unos detalle del Ferrari de la temporada 2014 y de 2015 con unos simples trazos en un papel. Se trata de Enrique Scalabroni.



Para los que no tengáis tiempo de ver el vídeo, aquí va un pequeño resumen de lo que dice: 

El Ferrari 2014 tiene un centro de balanceo en el eje delantero más alto que en 2015.

El centro de balanceo (CB) es el punto respecto al cual gira el chasis. Más correctamente, respecto al centro de balanceo gira la masa suspendida del Formula1 (la parte del coche que no está tocando el coche).  Hallar el CB en un coche con suspensión trapezoidal es muy fácil: el punto donde se cruzan las prolongaciones de los dos trapecios se denomina centro de rotación. Si unimos la huella de cada rueda con su centro de rotación, el punto donde se unan esas 2 rectas será el CB. En reposo, el CB debe estar en el centro.



Sin embargo, la altura de ese punto no es la importante, sino más bien la distancia vertical entre el CB y centro de gravedad del coche

En 2014 esa distancia era más pequeña que en 2015. Por lo tanto, por un simple fórmula de momento (fuerza por distancia), la capacidad de balanceo en 2014 era muy pequeña, lo cual hacía que las fuerzas centrífugas en curva las tuviesen que absorber los elementos rígidos de la suspensión (trapecios). Esto hacía que los neumáticos se deslizaran mucho y tuvieran un gran desgaste. Como dirían los periodistas, no conservaba neumáticos. Y lo que es peor: ese gran desgaste suponía que la velocidad del paso por curva que podían hacer era necesariamente inferior al resto de los equipos.

En cambio, ¿qué ocurre en la configuración de 2015? El CB está bastante más bajo y el centro de gravedad podemos considerarlo que estaba en el mismo sitio más o menos. Lo cual hacía que el chasis pueda balancearse mucho más. Es decir, toda la energía que hay que disipar en el paso por curva o en frenada no se la van a llevar los elementos rígidos solo, sino que la suspensión, y más concretamente los amortiguadores, van a llevarse una buena parte de esa energía. 

Según comenta Scalabroni, en 2015 los amortiguadores de Kimmi Raikkönen eran blandos, lo cual hace que se puedan deformar mucho y disipar una buena cantidad de energía. Y además, por todo lo que hemos dicho, los neumáticos se desgastaban menos y la velocidad por curva era más alta.

El CB y el diseño de la suspensión es una cuestión muy importante de diseño en cualquier tipo de coche. Además, el centro de rotación de las suspensiones es un punto instantáneo, ya que según cómo de comprimido estén los muelles o cómo se mueva la suspensión, ese punto cambia. Por lo tanto, también cambia el CB. Un buen diseño es lograr que el movimiento del CB en el eje transversal sea el mínimo posible, por lo menos en coches de calle.

Y en Formula1, recuerdo que no se pueden aplicar soluciones como parches. El coche funciona como un conjunto, y no se puede cambiar una única parte sin empeorar el comportamiento general de la máquina.



Más información en los siguientes enlaces:

Dos artículos que me han parecido clarificadores de todo esto:

https://jasf1961.wordpress.com/category/suspensiones/
http://www.meganracing.com/tech/faqs.asp?id=106&subject=Suspension

Un vídeo explicando la mayoría de conceptos de este artículo sobre CB

Y una entrevista en el recomendable Safetycast a Scalabroni
Comparte:

8/14/2015

Pintando temperaturas

Recientemente tuve que hacer un viaje para realizar un estudio con una cámara termográfica, la cual es la responsable de hacer una fotografía donde se aprecian qué partes están más calientes y cuáles más frías (dicho de manera bastante incorrecta). Para los que veis Formula1, estoy hablando de cámaras así:


En la foto, claramente se ve que los neumáticos están muy calientes, mientras que la carrocería y restos de parte del motor apenas se colorean debido a la alta velocidad de los coches y su enfriamiento por convección.

Una cámara termográfica mide la radiación infrarroja emitida por un objeto. El hecho de que la radiación es una función de la temperatura superficial del objeto hace posible que la cámara termográfica pueda medir y mostrar esa temperatura. - See more at: http://www.nivelatermografia.net/blog/tecnicas-de-medicion-termografica-midiendo-la-emisividad/#sthash.YLHj05WY.dpuf
Una cámara térmica mide la radiación infrarroja emitida por un objeto. El hecho de que esa radiación sea una función de la temperatura, permite a la cámara poder calcular dichas temperaturas. Sin embargo, no es tan simple como sacar una foto y ya está. La razón es que la temperatura también depende del factor de emisividad del objeto (este factor se usa para calcular cuánta energía emite un cuerpo simplemente por el hecho de estar a una temperatura superior a 0K).

Y además también influye en la foto la humedad relativa del ambiente, la temperatura, la luz, y la distancia entre objeto y cámara. Por lo tanto, antes de realizar cada sesión de fotos en una cámara de estas características, se hace necesario compensar los efectos que he citado para obtener una foto en condiciones.

Sigamos con el texto, a ver si explico a dónde quiero llegar. A continuación os dejo una fotografía térmica realizada en la pared exterior de una casa reciente:


Esta casa tiene una capa fina que asemeja a la piedra. Esa parte está pintada en rojo-anaranjada. La temperatura ambiente es de 33ºC, y la cámara ha dibujado la imagen según una escala de temperaturas entre 35,3 y 25,4. La emisividad es 0,81 (emisividad de la mampostería). 

Lo que se ve en azul es la estructura interna de la casa, los forjados. Es decir, estamos consiguiendo ver formas que están tapadas, aspectos ocultos de un cuerpo. Y precisamente esto es uno de los aspectos interesantes de esta cámara.

Realizar una foto de una fachada con una cámara térmica no es baladí, y hay algunas directrices claras a tener en cuenta: 

- las 12 del mediodía de un día de verano en un sitio soleado es el peor momento. En situaciones así hay mucho sol, y su calor y energía distorsiona los resultados de la foto.
- Si realizamos la foto de una pared, se requiere que entre la pared interior y exterior haya un gradiente de temperaturas de 15º como mínimo, ya que si no la calidad de la foto es muy pobre.
- en las fotos conviene que haya objetos de varias temperaturas. Si todos tienen aproximadamente la misma temperatura, la foto será bastante mala. 

Eso último se ve precisamente en la siguiente foto. Se trata de una pared interior de una vivienda. La pared está pintada, como todas las viviendas. Aún así, fijaos que la cámara es capaz de mostrarnos los ladrillos y que hemos encuadrado en la imagen el hombro de una persona para que haya un mayor contraste:


Este tipo de herramientas es habitual para poder detectar en un edificio dónde está el trozo de cable o circuito defectuoso, o fugas de agua que haya detrás de alguna pared.

Siguiendo con el razonamiento de estas imágenes, acudí al Monasterio de Guadalupe (Extremadura) para comprobar si lo mismo que ocurre con las viviendas modernas se puede obtener con el patrimonio. Es decir, intentar captar con la cámara térmica detalles constructivos que hayan quedado tapados bajo reformas y capas de pintura en la pared a lo largo de los años. Este tipo de estudios no se ha realizado con mucha frecuencia en patrimonio.

Sin embargo, mi gozo en un pozo, y las conclusiones del modesto estudio es que la cámara térmica no es la herramienta más adecuada para este tipo de tareas. Os dejo un par de ejemplos donde sí que se aprecian detalles, pero mucho menos que en la vivienda. La razón es que las paredes son demasiado gruesas.










Para terminar, la cámara no tiene un aspecto convencional:

 

Comparte:

4/05/2015

Accidente con KERS

Hace unas semanas los espacios deportivos eran un hervidero de rumores frente al extraño accidente de Fernando Alonso en los tests de Montmeló. Las causas todavía no están muy claras, y como consecuencia se están generando una gran cantidad de teorías sobre las causas. Unos amigos me preguntaban si una de esas teorías podía ser cierta. La teoría en cuestión es si el KERS es capaz de dar un descarga eléctrica suficiente para dejar al piloto inconsciente.

Mi respuesta fue que yo no me creía para nada ese rumor, pero me acordé de este vídeo que rescaté en su momento. Data de 2008, donde había un KERS y no lo que hay ahora (MGU-K y MGU-H). Pero eran los comienzos del KERS y se puede ver qué le ocurre al desprevenido mecánico de BMW Williams:


Según declaró BMW, claro que el KERS es capaz de matar a una persona, ya que maneja 400 V y 800 A de corriente continua. Y más información interesante al respecto, también aquí y aquí.
Comparte:

3/15/2015

Si los Formula1 fueran robots

El lector habitual del blog sabrá de mi afición a la Formula1, cuya edición número 66 ha comenzado hoy en Australia. El post de hoy viene a colación de tal acontecimiento, y ahí va la pregunta:

¿Qué criterio emplean los pilotos de F1 para trazar las curvas? ¿Van por el trazado más corto para recorrer una vuelta completa? ¿O circulan por el trazado que les permite ir siempre a la máxima velocidad posible? 

Si vemos las siguientes imágenes, parece que el trazado a) es mejor que el b), ya que realiza giros con más sentido común y sin cambios bruscos de trayectoria. Sin embargo, puede que no sea la mejor solución.




Como datos de partida, diremos que todos los equipos tienen el mismo criterio y que este es aplicable no sólo a la máxima competición del motor, sino a cualquier otra modalidad que consista en vueltas periódicas al mismo dibujo. Y la respuesta es única.

En la disciplina ingenieril de teoría de control, la respuesta a la pregunta la da el principio del Mínimo de Pontryagrin, que busca los parámetros de control óptimos en cada instante para que el tiempo de una acción sea mínimo. Y esa es la respuesta a la pregunta: los F1 recorren el trazado que les permite dar la vuelta en menos tiempo

No deseo entrar en los detalles de programación de este control en programas de simulación. El problema de que sistemas dinámicos vayan de un estado A a otro B ha sido estudiado con profundidad a lo largo de los últimos años, pero ahora está un poco más de moda por el boom de coches autónomos. Apostaría en que Audi, para realizar el récord de circuito que consiguió hace unos meses, empleó el principio de Pontryagrin, entre otras herramientas. El coche estaba programado para dar la vuelta perfecta y llevaba las instrucciones grabadas: donde un ser humano no tiene la precisión suficiente para ir siempre al máximo del rendimiento de la máquina, una máquina no tiene problema.

Solucionar este problema del Principio del Mínimo de Pontryagrin no es baladí, y todo parte de un modelo matemático que reproduzca de manera fiable el comportamiento de un coche. Pero después, el control no se reduce a dar la orden "siempre gas a fondo" y listo. No. 

Hay que ir con gas a fondo siempre que se pueda, pero hay restricciones físicas inviolables en el caso que estemos hablando de vehículos que realizan maniobras extremas. Hay que programar la función de control del coche para las siguientes condiciones:

- si nuestro coche tiene que durar X vueltas, no podemos ir al máximo en todas las vueltas, sino al máximo para llegar casi casi sin gasolina a la meta al final.

- no podemos ir tan rápido que el coche en curva tenga peligro de volcar por exceso de aceleración lateral.

- un correcto trazado en curva se basa en un punto de frenado tardío, una buena tracción y una entrada bien dirigida en curva. Todo eso no se reduce a "gas a fondo".

y un sinfín más de condiciones, como cuidado de neumáticos, aprovechamiento de la aerodinámica, etc. Todo esto lo estoy asumiendo para un coche que circula en solitario por un circuito. Incluir otros competidores en la pista complicaría mil veces el problema.

La aplicación de este principio está verde, pero se plantea como opción de control para vehículos híbridos de calle y hace tiempo que ya existen patentes que se basan en este principio (esta de 2005). En robótica experimental, ya es una realidad.

A quién le guste salsear, puede obtener información de teoría de control sobre cómo se resolvía este problema anterioridad en las curvas de Dubins, o las de Reeds y Sheep.





Fuente

Comparte:

9/25/2014

En Naukas: la manejabilidad de los carritos de supermercado

Os dejo mi última aportación en la plataforma Naukas. Gracias por los comentarios recibidos y la aceptación en Menéame.



Un alto porcentaje responsable de la maniobrabilidad de un vehículo y de su agilidad está en las ruedas y las suspensiones. Las ruedas no pueden estar totalmente perpendiculares respecto al suelo, sino que tienen una ligera inclinación denominada camber. Ya se habló en Naukas de que el buen manejo de este ángulo era clave en la época en la que Sebastian Vettel arrasaba. Pero hay más ángulos que afectan a la dirección del vehículo, y en este artículo pretendo hablar del ángulo de avance, o caster en la lengua de Shakespeare.

En todos nuestros coches, las direcciones son mecatrónicas. Es decir, hay elementos mecánicos que se unen entre ellos. El ángulo de avance es el ángulo que forma el eje de la dirección con una recta perpendicular al suelo que pasa por el centro de contacto del neumático. Pero ojo, el caster se ve desde el perfil del coche, tal y como se ve en la siguiente imagen:



La vista frontal sería así, pero el ángulo que se ve no es el ángulo de avance, sino el ángulo de kingpin.



El ángulo de avance es el responsable del par de autocentrado de las ruedas: cuando estamos conduciendo un coche, al tomar una curva el coche tiende a volver a enderezar la dirección de las ruedas hacia delante. ¿Por qué ocurre esto? En primer lugar, un neumático cuando gira está sometido a una fuerza lateral en el mismo sentido hacia el que giramos, es decir, siempre sentido exterior. Y si idealizamos el neumático, esa fuerza se da en el centro de la zona de contacto.

En segundo lugar, el caster si es positivo cae detrás de esa zona de contacto. Por lo tanto, la fuerza lateral crea un momento respecto al eje de la dirección que hace que la rueda se enderece. En inglés se denomina self aligning torque.



Los diseñadores de coches tienen que decidir cuánta información sobre la carretera transmite la dirección, y este concepto es uno de los principales. Es particularmente sensible en vehículos de competición, tal y como se puede comprobar aquí.

El carrito del supermercado también sigue este criterio, y si no lo creéis, fijaos en la siguiente foto:




En esta entrada colaboraron @CarlCasan y @GuilleAlfonsin, grandes amantes de la ingeniería

Comparte:

7/31/2014

¿Cómo funciona el nuevo KERS y el sistema brake-by-wire?

Retomo en el blog la costumbre de artículos técnicos de F1, justo ahora que hemos pasado el ecuador de la competición. Probablemente incluso la gente poco o nada aficionada a esta competición haya escuchado que este año ha habido un cambio grande en los motores: ¡YA NO HAY MOTORES!

Lo que se da ahora en la competición son unidades de potencia (Power Units), que están compuestas por un motor de combustión con turbocompresor, dos partes de recuperación de energía (MGU-H y MGU-K) y unas baterías. Esta nueva configuración del motor tiene sus consecuencias en la normativa en cuanto a penalizaciones por cambiar partes de motor, pero eso no nos interesa ahora.

De manera muy simple, el antiguo KERS es el equivalente a MGU-K, el cual consigue la energía a partir de la frenada del coche. El MGU-H consigue la recuperación de energía a partir del turbocompresor. Precisamente, lo que quiero en este artículo es explicar cómo se genera esa energía en el MGU-K. Es decir, nos deberían de surgir estas preguntas (aunque no todas estén correctamente planteadas):

- ¿Qué energía de la frenada usamos?

- ¿En la frenada, no se consume menos energía que en la aceleración?

- ¿Cómo se transforma el calor de la frenada en electricidad?

Vamos por partes:



El MGU-K puede funcionar como generador o motor, las cuales son opciones contrarias. En un caso, ese aparato genera energía y en el otro la consume. En la frenada concretamente, funciona como generador. La unidad de potencia y la parte eléctrica es de los mayores secretos de las escuderías durante cada año, pero veamos cómo trabaja:

La clave es que el MGU-K sólo se conecta al eje del cigüeñal del Formula1 durante la frenada. En otros momentos no hay unión mecánica. El MGU-K podemos considerarlo como un motor eléctrico: estos elementos normalmente están compuestos por un rotor y un estátor (ambos concéntricos).


El rotor es un elemento giratorio mientras que el estátor es fijo. El rotor está formado por un entramado de bobinas que atraviesan los campos magnéticos de los imanes que hay colocados a lo largo del interior del estátor, y como cualquier estudiante de Física básica debería saber, un conductor que atraviesa campos magnéticos variables es atravesado por una corriente. Es decir, el rotor estaría generando una corriente eléctrica y ésta sería la que se almacene en las baterías del Formula1. Como podéis ver en imágenes reales de este elemento, sí que se parece al dibujo superior:



El tren trasero del Fórmula hace girar el rotor: es decir, el rotor aporta un par resistivo y ayuda a acortar la frenada del Formula1.

Hasta aquí hemos explicado brevemente el MGU-K cómo recupera la energía de frenada. Pero su influencia en la frenada no ha terminado, ya que ahora hay que hablar del sistema brake-by-wire. Éste hace referencia a que no existe unión mecánica entre el pedal y la presión que se ejerce sobre los discos de freno, sino que la presión de frenado se calcula electrónicamente. De esta manera, una pisada del piloto no frenará lo mismo siempre, sino que variará. ¡Vaya lío!

Vamos a intentar decirlo más claro: al pisar el pedal, se genera una pequeña señal eléctrica que llega a la centralita del vehículo. En función de la presión de frenada, la velocidad, etc, la ECU calcula un tipo de presión que la bomba de líquido de freno realizará. Y ahora viene la parte en la que relacionamos con el sistema de recuperación de energía:

La normativa FIA establece claramente el límite de energía que se puede recuperar por vuelta mediante el MGU-K. Por lo tanto, hay un límite por el que este elemento puede funcionar como generador. Mientras el MGU-K no haya llegado al límite de su energía, hay una válvula (comandada por la ECU) que se encarga de reducir la presión de frenado. Sin embargo, cuando se ha alcanzado el limite impuesto por la FIA esta válvula ya no funciona, y los pilotos al frenar podrán ejercer una mayor presión, lo cual puede hacer que bloqueen las ruedas traseras con mucha más facilidad. 

A todo esto, hay que añadir el repartidor de frenada del que ya hablamos hace un tiempo por aquí. No es seguro, pero es posible que esto de que cada vez frenamos con una fuerza distinta sea la razón principal para el aparatoso accidente que hubo en la salida de la primera carrera de la temporada, donde Massa se comió a un monoplaza al llegar a la primera curva.

Por último, aquí tenéis un vídeo de Brembo explicando el sistema de frenado de este año:



Fuentes
 
 



Comparte:

5/09/2014

¿Por qué se ensucian más las llantas delanteras que las traseras?

Es algo que ocurre en todos los coches y que se nota más en unos que en otros. El frenado en automoción se obtiene sobre todo mediante fricción de la pastilla de freno. Ésta es la razón para tener que descambiarlas por desgaste cada cierto tiempo. Sin embargo, esto no explica la diferencia de suciedad u hollín negro en las llantas. La razón consiste en el reparto de frenada que debe tener el coche. Desde luego, un reparto de 50%-50% entre eje delantero y eje trasero no es para nada lo adecuado, y es lo que se va a tratar de explicar en este artículo. 

Por un lado tenemos el reparto de peso del vehículo, y por otro el reparto de frenada. El reparto de peso de vehículo es el peso que aguanta cada uno de los ejes en parado. Normalmente, los coches de calle tienden a ser relaciones cercanas a 50%-50%. Como prueba de ello, véanse estos dos vídeos (1 y 2).



Esto es una de las características que afecta a la maniobrabilidad del coche, junto a la suspensión, ángulo de los neumáticos y otros factores. Normalmente un coche que tenga un reparto de peso 50-50 tenderá a subvirar. Es decir, este coche será "perezoso" y costará más giro de volante que siga la trayectoria de la curva que queremos. El opuesto es el carácter sobrevirador. Esto es muy interesante en vehículos de competición, donde gracias al hecho de tener un motor trasero, logran tener relaciones de 40-60 y tener un coche mucho más nervioso que tiende a salirse de la curva, parece que "el culo del coche" nos quiera adelantar (para profundizar técnicamente en razones de esto, recomiendo este y este enlace).

Pero otro concepto es el reparto de frenada: durante el proceso de frenado, ocurre una transferencia de peso (que no de masa), y según distintos modelos podemos llegar a tener frenadas de un reparto de 85-15% de peso entre el eje delantero y trasero respectivamente. En este punto se hace necesario introducir un breve concepto de Mecánica, la rama de la física que se encarga del estudio de los cuerpos ante fuerzas y desplazamientos.

Asumiendo muchas simplificaciones y un modelo muy sencillo de la realidad, la frenada que hay que aplicar a una rueda es directamente proporcional al peso que aguanta esa rueda por un coeficiente de fricción del asfalto (normalmente, μ=0.8 aproximadamente). Cuando el freno esté haciendo más fuerza que esa cantidad, bloqueará el neumático y deslizará. Como el peso que soporta en frenada delante es mucho mayor que detrás, los frenos delanteros tienen que hacer más fuerza y se dimensionan para que sean más grandes.


Lo ideal es que cuando haya deslizamiento, las cuatro ruedas lo hagan simultáneamente. La transferencia de peso no sólo depende del reparto de peso en frenado, sino también de la altura del centro de gravedad, radio de las ruedas y peso total. 

¿Y por qué cambian el reparto de frenada los pilotos de Formula1? Puedes terminar de leerlo aquí, en el blog de la Escuela Politécnica de San Sebastián. 


Fuentes del artículo:
http://automotivethinker.com/chassis/stop-and-weight-a-5050-weight-distribution-is-not-optimal/
http://www.stoptech.com/technical-support/technical-white-papers/white-paper---brake-bias-and-performance-why-brake-balance-matters
https://en.wikipedia.org/wiki/Automobile_handling
http://www.autospies.com/news/The-Effect-of-Weight-Distribution-on-Turning-Moments-50856/
http://www.autozine.org/technical_school/handling/tech_handling_6.htm
http://www.autozine.org/technical_school/handling/tech_handling_4.htm

Comparte:

4/21/2014

Pinceladas sobre los nuevos motores de Formula1 2014

Seguro que todos los aficionados a Formula1 y los no tan aficionados se han enterado que este año algo raro pasa con los motores de Formula1, que Red Bull no arrasa en este comienzo de temporada como antaño, que Ferrari tiene un ritmo un poco irregular, que Mercedes va como un tiro...

Bueno, los motores han cambiado mucho esta temporada. Tanto, que ahora ya no se denominan "motores" en el reglamento, sino unidades de potencia. Son motores + MGUH + MGUK + baterías. Las dos principales novedades es que los motores han pasado a ser turbo y que ahora tienen una parte fundamental de incremento de potencia mediante sistemas de recuperación de energía. Red Bull hizo un buen vídeo explicativo:


Aunque a mí me parece que los el siguiente vídeo o este link aclaran un poco más la parte técnica:



Alguien ya se habrá pensado que voy un poco tarde para explicar estas cosas, sino que ya se sabían desde comienzo de la temporada y antes. Pero en esta entrada quiero hacer notar algunas características de los propulsores que puede que hayan pasado desapercibidas para muchos aficionados. Lo que está claro es que los equipos todavía tienen que entender esos motores y mejorarlos. Ahora mismo no están a su mayor potencial.

Ya es conocida la norma de la FIA que indica que hay que consumir como máximo 100 kilos de combustible durante la carrera, pero lo que además llama la atención al aficionado es que el caudal también está limitado. El artículo 5.1.4 de la normativa técnica reza: "El caudal máximo de gasolina no deberá superar los 100kg/h". Por lo tanto, ese es uno de los grandes retos de los motoristas: optimizar el caudal y entrega de potencia.

Otra característica curiosa es que las revoluciones del motor están limitadas a 15.000. Pero si nos fijamos en detalle en vídeos y leemos un poco en los foros especializados, veremos que los coches normalmente están entre 10.000 y 12.000 vueltas. ¿A qué se debe? A 10.500 rpm, se alcanza el flujo máximo de combustible, junto al par máximo. Y a 12.000 rpm se llega a la potencia máxima. Por lo tanto, es a 12.000 la menor relación entre cv/potencia. Con estas características, no hace falta llegar a 15.000.

Además, los frenos usan el sistema brake-by-wire, lo cual es una importante novedad y representa una frenada electrónica. Es decir, el coche frena con fuerza distinta según las condiciones, y normalmente eso está regido por un software. Ahora mismo ese software todavía hay que afinarlo, y probablemente eso falló en la salida de Melbourne cuando Kobayashi hizo un recto en la primera curva y se llevó por delante todo lo que pilló y a Massa en especial.

El ruido de los motores ha cambiado mucho, y los aficionados se han quejado de eso. Los motores realmente no sabemos cómo suenan, ya que lo que corta la onda sónica es la turbina del turbo. El turbo es el mejor silenciador de motores.

La tecnología permite que un mapa motor bien hecho, el empleo de nuevos materiales, la optimización del software u otra técnica permita ganar cv u otro parámetro del motor. Lo veremos, seguro. De hecho, según mencionaba el gran @virutasf1 en Twitter, esta semana parece que Ferrari "se encontró" 20 cv que no esperaba encontrar en su motor.



Si queréis seguir sabiendo más, os recomiendo echar un vistazo a las cuentas de @winfieldf1, @shumyagain, @bueuF1 o @ivanF1.
Comparte:

10/05/2013

Naukas Bilbao 2013: no me toques los Pirelli

Y ya van 3 ediciones de Naukas Bilbao. No pierdo las ganas de ir. He asistido en tres ocasiones e impartido charlas en las dos últimas. Paradójicamente, tengo la mala costumbre de no poder acudir desde el principio de las jornadas, y me perdí gran parte de la sesión del viernes por la mañana por razones de fuerza mayor.

Mi charla se tituló No me toques los Pirelli, en un alegato de defender a los neumáticos y la dificultad que entraña su cálculo. No hay modelos exactos de comportamiento ni siquiera para los de calle. Disfruté mucho documentándome sobre este tema y tuve la oportunidad de entrar en contacto (entre otros) con un ingeniero español de Pirelli en la F1, @manuelmunozF1, y F1_aero, a los que recomiendo seguir. Sin más preámbulos, este es el vídeo de la charla, cortesía de EITB (TV autonómica de Euskadi): http://www.eitb.tv/es/video/naukas--bilbao/2698453634001/2705790461001/capitulo-52/.

Y esta es la presentación que usé:


Este año como novedad, participaron The Big Van Theory, un gran grupo de divulgación científica a través de humor. Os recomiendo seguirles la pista. Pero también se celebró Naukas Kids, donde Alfred y Clara Grima llenaron una sala de niños que querían aprender de ciencia. Supongo que todo el mundo está a gusto cuando encuentra a personas afines a sus gustos y con los ue hablar, debatir y compartir vivencias, y esto es ni más ni menos lo que ocurre en este evento. No hay que olvidar que nada de esto sería posible sin los organizadores, @irreductible, @aberron, @maikelnaiblog, @inerciacreativa y @uhandrea. Pero también me llevo un buen recuerdo de algunas charlas que tuve con el gran @daniEPAP. Cómo se nos alegra la cara cuando nos vemos @ferdelacuadra y yo. El abrazo que @scientiajmln habitualmente nos da. La curiosa manera (para mí) que emplea @ravenNeo para preguntarme sobre mis temas del blog y la Formula1, y sus discusiones con @darksapiens sobre la humanidad. Lo que saben @ferfrias, @milhaud, @javierarmentia y @brucknerite no se puede resumir en una buena estantería de libros. @pr3cog y @javierdelacueva es muy humano. Si tienes una duda sobre la universidad, @emulenews es una buena fuente. @puratura siempre tendrá alguna buena canción o pieza de música que recomendarte, y @migusant ha escrito dos buenos libros. A ver si consigo que @elbuhodelblog se anime a dar una charla en este evento. Me dejo a más, pero no por eso son menos importantes.

Además, de mi charla, os recomiendo encarecidamente ver estas otras:


- el misterioso escocés del que habla @omalaled y que es más importante de lo que parece: http://www.eitb.tv/es/video/naukas--bilbao/2698453634001/2701508784001/fernando-del-alamo/








Comparte:

9/16/2013

Massa y el flutter

Al hilo del anuncio oficial de que Massa deja de ser piloto Ferrari, me he acordado de este fenómeno que levantó bastante polémica en su momento.


 

Este fin de semana he estado comentando con @shumyagain y @genfe2 (aquí conversación) el fenómeno. Es puramente especulativo, ya que Ferrari no dio explicaciones sobre estas imágenes, pero parece intuirse que se trata del flutter. El flutter es una oscilación descontrolada que puede llevar a la rotura de la superficie donde ocurre. Puede ocurrir en superficies fijas como en móviles de una estructura aerodinámica (fuente). En el caso de Massa, las causas pueden venir del uso de materiales aeroelásticos que hacen que flecte el alerón ante determinada carga. 

Este comportamiento no es lineal, y puede ocurrir al superar un umbral de valor. Los tests que realiza la FIA para asegurarse de que el alerón cumple la normativa es para ver que el alerón es lineal con unas masas determinadas. No es ningún supersecreto tecnológico, ya que los materiales aeroelásticos hace tiempo que llegaron a los coches de calle, como lo demuestra este vídeo del Ferrari 458 Italia en el segundo 30. Hablé de todo esto hace un tiempo en esta entrada.

El flutter suele estar relacionado con el estado de resonancia del alerón, es decir, que empiece a vibrar con su frecuencia natural. Los aviones también pueden sufrir este fenómeno, por lo que se tiende a que la frecuencia natural sea alta para evitarlo, tal y como demuestran los dos siguientes vídeos:


O este espectacular vídeo de una maqueta del 787 con flutter. En la historia han ocurrido muchos accidentes por fallo estructural debido al flutter, pero uno de los más famosos es el del Lockheed F-117 Nighthawk:


En el caso de que el ala o alerón sean de materiales compuestos, hay que tener en cuenta la capacidad de amortiguación de estas superficies. Este es un buen artículo que habla al respecto, en el que distingue entre amortiguación estructural y amortiguación aerodinámica: Effects of structural damping on composite panel flutter,

Por supuesto, el caso de Massa no es que vibrase el alerón de manera descontrolada, sino que parece que ocurre con el DRS abierto y tras pasar un cambio de rasante.





Fuente: Wired
Comparte:

7/10/2013

En Naukas: las consecuencias de que los Formula1 no corran con las ruedas de los Picapiedra

A continuación os dejo mi última colaboración en Naukas. En él colaboraron varias personas, como @genfe, @shumyagain, @winfieldf1 y @white_f1, aunque no los haya puesto a todos en las fuentes. Muchas gracias a todos por los comentarios. Podéis ver el artículo original aquí:





La Fórmula1 ha pasado a ser una competición de gestionar neumáticos

Esta frase la dijo el dueño de Red Bull hace unos meses en tono crítico sobre la influencia que tiene este elemento del coche en los monoplazas. Sin embargo, cuando más ruido han hecho los medios de comunicación y los aficionados ha sido tras el GP de Silverstone, en el que hubo hasta 4 reventones de neumáticos en 4 equipos distintos.

En este artículo, vamos a dejar a un lado las polémicas y tratar de explicar por qué hubo este problema:

El neumático que estalló en los 4 casos fue el trasero izquierdo. La razón para ello es que en el circuito inglés es el que más sufre. Además, tal y como expliqué en este otro artículo de Naukas, los equipos corren con las ruedas hacia adentro, patizambos. Técnicamente a esto se le denomina camber negativo y suele requerir presiones de rueda un poco bajas. Esto provoca que el borde de la rueda sufra más que lo que debiera. El hecho de que tenga poca presión en los neumáticos y ese ángulo de caída permite que la superficie de contacto entre la goma y el asfalto sea grande, lo cual le aporta más tracción y más estabilidad en curva. Al tomar las curvas, las fuerzas laterales a las que se ve sometido el neumático le dan una ganancia de camber positiva, es decir, las ruedas se ponen un poco más rectas.

Además, en los últimos días hemos sabido que otra de las causas de los reventones ha sido que las escuderías cambian los neumáticos de lado. Es decir, el neumático derecho al principio desgasta su lado interior; si a continuación se cambia y se pone en el lado izquierdo, desgastará su otro lado interior. Es una técnica extendida entre todas las escuderías. Sin embargo, la estructura de las gomas Pirelli de este año es asimétrica. ¡Qué mala suerte! Los dos flancos de los neumáticos no tienen las mismas propiedades. En la siguiente foto se ve claramente por dónde se rompen:


Ante todo esto, la FIA ha decidido intervenir y en Nürburgring especificó las condiciones de ángulo y presión máximos y mínimos y la prohibición de cambiar los neumáticos de lado.

Al apoyar sobre el borde, el gradiente de temperatura que tenemos es éste (no es un Formula1, pero el principio se aplica). ¿Y cuál es la razón última para tener que calentar los neumáticos? La clave está en la adherencia. Los neumáticos tienen una ventana de valores en la cual funcionan bien, entre unos 80º y 100º (aquí @white_f1 me ha hecho una pequeña puntualización, y es que en el GP de Alemania de este fin de semana se ha visto que la temperatura ideal era entorno a 111ºC). Sin embargo, si la temperatura se queda por debajo, la adherencia es mala. Por encima, el neumático puede empezar a sufrir ampollas o blistering.

¿Qué cambios se van a aplicar a partir de ahora? Pirelli en Alemania llevó neumáticos con cinturón de kevlar, y a partir de Hungría, una nueva gama completa basándose en características de 2012 y 2013. El año pasado, la estructura era de kevlar, el cual es un material más ligero con un valor de calor específico mayor que el del acero. Hasta Silverstone, la estructura ha sido de acero. ¿Y eso que implica?

La energía que acumula una rueda sobre todo es su energía cinética, cuya fórmula es:


donde I es el momento de inercia y proporcional a la masa; w es la velocidad de giro. El nuevo neumático pesa unos 700gr menos, con lo que la energía que debido a la fricción se transformará en calor, ahora va a ser menor. Es decir, costará más calentar el neumático, algo que es de vital importancia en este deporte.

¿Pero por qué es necesario ese fenómeno que Lobato ha hecho famoso? ¿Por qué hay que calentar los neumáticos? Para conseguir grip, y el proceso de conseguirlo es uno de los fenómenos más complicados de predecir y modelar en el mundo del motorsport. El proceso de adherencia básicamente se compone de la superposición de un fenómeno físico y químico. Es en esta segunda parte en la que es de vital importancia tener una temperatura suficientemente alta.

De manera simplificada, la parte física es la que hace que el neumático se deforme y adapte a las irregularidades de la carretera, tal y como se ve en este vídeo con el ángulo de deriva, por ejemplo. Esta es la razón para zigzaguear tanto en la vuelta de formación. El neumático está compuesto por caucho (polímeros), y la viscoelastividad es algo intrínseco a las moléculas de alto peso molecular (polímeros). No podemos considerar el neumático un elemento perfectamente elástico, ya que según la teoría de la elasticidad, el neumático se deformaría y volvería a su estado original y temperatura original, pero no es el caso, ya que el neumático sí que se calienta. Si vemos un gráfico tensión-deformación de un material elástico frente a un viscoelástico, tendremos esto:



El valor del coeficiente de fricción depende de la temperatura y del comportamiento viscoelástico. A mayor velocidad, se genera más temperatura, pero como norma general, se puede decir que hay un valor máximo de coeficiente de fricción a una temperatura. A la adherencia que produce esta aportación del neumático se le denomina adhesión.

Entonces, una vez conseguido el calor, vamos con la química: tal y como hemos mencionado, la mayoría del neumático son cadenas de polímeros, concretamente cauchos. En las gomas conviven tanto el caucho natural como otros sintéticos, entre los que se encuentra el copolímero estireno-butadieno, polibutadieno, bromobutilo, silicatos y otras sustancias.

La goma en su estado y temperatura normal es muy blanda. Por ejemplo, en el caucho natural, la temperatura de transición vítrea es -5ºC. Por debajo de ella, el caucho se vuelve cada vez más quebradizo y frágil. Sin embargo, por encima de esa temperatura de referencia, el caucho tiene un comportamiento parecido al de la plastilina, tendiendo a viscoso cuanto más alta sea la temperatura ya que esta particular sustancia está formada por cadenas de polímeros a las que el calor dota de mucha movilidad. Por esa razón, en los neumáticos se añade sulfuro para unir esas cadenas de polímeros, reducir su movilidad y dotar al material de más consistencia. Este proceso con el sulfuro también se denomina vulcanizado.


Sin embargo, durante la carrera las ruedas reciben más calor mediante las frenadas y deformaciones del neumático. En ese momento, los monómeros tienen aún más movilidad y el material empieza a reorganizarse, pero esta nueva estructuración implica que el material se degrada. Este proceso de reconfiguración no es nada predecible ni fácil de hacerlo inteligente. De ahí que sea tan difícil calcular el desgaste de los neumáticos. Si el calor es demasiado, la degradación empezará a ser mecánica, en la que se desprenden trozos de material, las famosas virutas de goma.

Cuando el material empieza a calentarse sin excederse, el caucho se hace más blando y esponjoso, y es esta característica la que hace que se adapte mejor a las rugosidades de la carretera y dote al coche de más agarre. A este proceso se le conoce como indentación. Junto a la adhesión, conforman la adherencia total del zapato del coche.

Sin embargo, todo esto es variable en función de la temperatura variable de la pista, la goma depositada sobre ella, la temperatura ambiente, el desgaste de neumático, si hay un coche delante muy cerca o de si la pista está húmeda.

A continuación, pasaré a terminar las polémicas que surgieron hace unos 4 meses sobre los Pirelli, en el que la noticia más sonada era que el fabricante endurecerá sus neumáticos ante la presión de Red Bull, ya que parecía que el equipo austríaco destrozaba los neumáticos si eran muy blandos. Y la noticia realmente estaba mal contada: a la complejidad de los neumáticos de este año en cuanto a materiales, temperaturas, presiones y ángulos, hemos de añadir que tienen un perfil aerodinámico que afecta al flujo del aire, y tal y como explicaron en esta web. Este detalle sobre todo ha influido en que este año hace que llegue aire sucio al difusor. Es un efecto conocido como tyre-squirt. En otras palabras, algunos equipos cuya dependencia del difusor para crear carga aerodinámica era grande, se veían perjudicados.


Se pueden contar más cosas de este complejo mundo de gomas, como el proceso de abrasión, la influencia aerodinámica en estos elementos, el desgaste o las simulaciones en el túnel del viento, pero eso ya quedará para otra ocasión.


Fuente 1, 2, 3, 4 y @elbuhodelblog


ACTUALIZACIÓN (27 agosto 2013)
La fricción de los polímeros está fuertemente relacionado a su comportamiento viscoelástico. La fricción sube hasta un determinado valor máximo, seguido del descenso de ese coeficiente de fricción. Esto es debido a la elasticidad de las cadenas de polímeros.

El artículo de Grosch (1963) fue el primero que realizó un análisis de este fenómeno y afirmó que la fricción es un fenómeno derivado de la energía disipada por el neumático al eliminar sus pequeñas impurezas de la superficie. (Grosch indicated that friction is due to energy dissipated when rubber is compressed and released by asperities)

Fuente
Comparte:

5/12/2013

El cálculo de los neumáticos en Formula1

Desde siempre, los neumáticos han sido parte principal del espectáculo de Formula1. Más aún cuando el proveedor de neumáticos es único y se dan los mismos compuestos para todos los equipos. Esto lleva a quejas relativas a que un neumático conviene a un equipo y no a otro. De hecho, este fin de semana me llegó un twit que insinuaba que la Formula1 se ha convertido en un rubber-racing, es decir, en carreras donde corren las gomas. Yo no estoy muy de acuerdo. Opino (que es lo que se hace en twitter, y no sentar cátedra) que ahora mismo es aerodinámica, aerodinámica, aerodinámica y neumáticos



Los equipos de Formula1 usan modelos matemáticos para predecir el comportamiento de los neumáticos. No usan magia, ni datos secretos de la CIA, ni nada parecido. Usan ciencia, publicable en artículos científicos. Por ejemplo, éste es un modelo matemático de comportamiento del neumático.

El comportamiento del neumático del coche no es nada trivial. Depende de las cargas, velocidad, rugosidad del asfalto, temperatura, composición del neumático, que según se va desgastando pierde sus propiedades, o que se deforma. Su modelado es tema de investigación todavía, como lo demuestra este proyecto de investigación europeo: FRICTION, o incluso una revista científica dedicada al neumático.

Uno de los modelos modelos más usados por los equipos de Formula1 también está en la bibliografía. Lo publicó un profesor de universidad en 1989, y tiene el rimbombante nombre de fórmula mágica de Pacejka. Este nombre se debe a que la fórmula no está extraída a partir de un estudio físico del problema, sino de manera empírica, y sus resultados encajan bastante bien en muchas situaciones. No es tan fácil como una ecuación que se pueda impartir en una hora de clase, pero es un modelo muy estandarizado en la competición.

Hans Pacejka lo publicó siendo profesor de la universidad de Delft, y ha estado diseñando fórmulas para su modelo durante los últimos 20 años. Se ha convertido en un estudio básico en cualquier competición automovilística. 

La fórmula de Pacejka permite obtener las fuerzas a las que está sometido un neumático. Cada uno está caracterizado por una serie de coeficientes (de 10 a 20), los cuales sirven para calcular la fuerza longitudinal, lateral y momento de alineamiento del neumático, según los siguientes parámetros:
- carga que soporte el neumático (aproximadamente 1/4 del peso de coche)

Ejemplo de asignación de valores a los coeficientes. La curva tiene la siguiente pinta:



- En rojo tendríamos el esfuerzo lateral, en función del angulo de deslizamiento (o slip angle).

- En negro tendríamos el esfuerzo longitudinal en función del slip ratio.

- En verde tendremos el momento autoalineante de las ruedas, que es el que principalmente nos da las sensaciones al volante, gracias al cual “sentimos” la carretera en curvas (en función del slip angle).


Este modelo requiere más explicación que la breve presentación que se va a hacer en este artículo, y por eso Pacejka publicó un libro con su modelo. Aún así, la fórmula básica es la siguiente:


Y también existe un código para calcular estas gráficas en Matlab. A partir de los resultados de las fuerzas, podemos calcular la adherencia. Para este estudio también hay distintas variantes y modelos que arrojan mayor o menor precisión a los equipos.

Sin embargo, no nos podemos olvidar tampoco del desgaste del neumático, para el cual también hay una cierta incertidumbre entre el modelado matemático y lo que ocurre en la realidad. El desgaste depende en gran medida de la composición de la goma, dibujo o asfalto. Un ejemplo.

¿Por qué es Pacejka uno de los más usados? Es un modelo comprensible para mucha gente, y con poco coste computacional para usar en simuladores. Además, tal y como hemos comentado, arroja buenos resultados. Sin embargo, no tiene en cuenta un estudio térmico, y depende en gran medida de los coeficientes. La labor de calcular los coeficientes correctos depende de cada usuario final, ya que debido al secretismo y propiedad intelectual de los fabricantes, es difícil tener una colección de posibles valores y la sensibilidad de cada uno de ellos en la fórmula.

Al modelo de neumático calculado con la fórmula de Pacejka se le denomina MF-Tyre (magic formula tyre). Hay otros modelos de neumático, que probablemente se usen también en parte de la industria y alta competición, como RmodK, CD-Tire o F-Tire.



Fuentes: 1, 2, 3, 4
Comparte:

4/17/2013

La 7ª marcha de Vettel

Los aficionados a la Formula1 y a su tecnología seguro que han escuchado muy a menudo de que el equipo Red Bull tiene la marcha más larga de su caja de cambios, la 7ª, más corta que el resto de la parrilla. Se pudo escuchar en varias ocasiones por ejemplo durante la retransmisión del GP de China en Antena3 en España, por ejemplo. ¿Para qué sirve esto y qué implica?



El equipo de la bebida energética lleva usando este tipo de configuración desde que comenzó a usarse el DRS. Lo que permite una séptima marcha más corta es llegar antes al régimen máximo de motor, es decir, permite acelerar más rápido. Veámoslo sobre una gráfica de 5 marchas:


El desarrollo y evolución de las marchas de un coche podría ser el siguiente. El gráfico indica que el régimen al que se salta de marcha es a 5.600 rpm, y en el eje horizontal aparece en condiciones normales, la velocidad máxima que ese vehículo es capaz de alcanzar al régimen máximo en cada marcha. Uno de los conceptos clave en este caso es la pendiente que forma cada marcha respecto a la horizontal. Es decir, la marcha en la que más rápido se acelera es la primera, ya que es la que tiene la mayor pendiente. Y la marcha de menos aceleración es la 5ª, justo por la razón contraria. 

Al decir que el equipo RBR tiene una 7ª marcha más corta implica que la pendiente de su 7ª marcha es mayor que la de otros equipos. ¿Eso que indica? Que acelerará más rápido, pero en cambio, la velocidad máxima que alcanzará será menor. Esta explicación se puede ver en el gráfico de abajo. Supongamos que de alguna manera, la marcha más larga de los coches de la parrilla es la marcada en negro, y la de Red Bull es la marcada en verde.



Es decir, mientras que otros equipos de la parrilla buscan la punta de velocidad para alcanzar a sus rivales, Red Bull ataca con la aceleración. Esta capacidad también la emplea para acelerar y salir de las curvas todo lo rápido que puede. ¿Cuál es el lado malo? Que la aceleración excesiva desgasta mucho los neumáticos. 

Si habéis seguido el artículo, os habréis dado cuenta de cuáles son los puntos fuertes y débiles típicos de este equipo, y es que no tiene una velocidad punta muy alta, no cuida bien los neumáticos, pero en cambio, su gran ventaja es que su paso por curva rápida es muy superior al resto.

Como en muchos otros ámbitos, esto es un compromiso y un equilibrio de distintos factores. Esta escudería ha apostado por estos, pero no es el único acuerdo de soluciones.

Este artículo no hubiera sido posible sin Mauricio Bollini y Ander Lujanbio.
Comparte:

Sígueme en redes:

descripción descripción descripción

En mi mesilla

Blog Archive